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In hydrodynamics, Taylor’s frozen-in hypothesis connects the wavenumber spectrum

to the frequency spectrum of a time series measured in real space. In this paper, we

generalize Taylor’s hypothesis to magnetohydrodynamic turbulence. We analytically

derive one-point two-time correlation functions for Elsässer variables whose Fourier

transform yields the corresponding frequency spectra, E±(f). We show that E±(f) ∝
|U0∓B0|2/3 in Kolmogorov-like model, and E±(f) ∝ (B0|U0∓B0|)1/2 in Iroshnikov-

Kraichnan model, where U0,B0 are the mean velocity and mean magnetic fields

respectively.
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I. INTRODUCTION

Theoretical, experimental, and computational tools are employed for studying turbulence.

Kolmogorov 1,2 constructed one of the most popular model of turbulence and showed that

for homogeneous and isotropic turbulence, the kinetic energy spectrum in wavenumber space

is

Eu(k) = KKoǫ
2/3
u k−5/3, (1)

where k is the wavenumber, ǫu is the dissipation rate of kinetic energy, and KKo is Kol-

mogorov’s constant. Computation of Eu(k) requires three-dimensional velocity field, which

is difficult to measure in experiment. Instead, the velocity field is measured at select real-

space points. Taylor 3 proposed an important conjecture that helps connect Eu(k) to the

frequency spectrum, Eu(f), of the measured time series. Taylor 3 hypothesized that turbu-

lent fluctuations are advected by the mean flow (velocity U0) as if fluctuations are frozen

in the flow. Under this assumption, using Kolmogorov’s spectrum of Eq. (1), we can easily

derive the frequency spectrum as

Eu(f) = A(ǫuU0)
2/3f−5/3, (2)

where A is a constant. Thus, Taylor’s hypothesis plays an important role in turbulence

experiments and data analysis.

Kraichnan 4 argued that the large-scale eddies too sweep the small-scale fluctuations, a

phenomenon called sweeping effect. Wilczek and Narita 5 and He et al. 6 generalized Eq. (2)

by taking into account the sweeping effect. Recently, Verma et al. 7 performed a detailed

calculation of temporal correlation function that includes sweeping effect and turbulent

diffusion; they showed that Eu(f) ∝ f−5/3 in the presence of a mean flow, but Eu(f) ∝ f−2

when U0 is small compared to the fluctuations.

In magnetohydrodynamic (MHD) turbulence, the velocity and magnetic fields have their

mean values (U0 and B0, respectively, in velocity units) and fluctuations. Hence, Taylor’s

hypothesis and Eq. (2) need generalization, especially because Solar wind and solar corona

are important MHD turbulence laboratories where spacecrafts make in situ measurements of

the velocity and magnetic fields. Taylor’s hypothesis would help us derive the wavenumber

spectrum using the frequency spectrum of the time series. Note that the typical speed of

spacecrafts are much smaller than the solar wind speed (250 km/s to 750 km/s). Hence,
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the spacecraft can be assumed to be stationary, consistent with the assumptions of Taylor’s

hypothesis. Another important factor is that B0 ≪ U0 at distances 0.3 AU or higher, where

most spacecrafts are located. As a result, we can ignore the effects of the mean magnetic

field and employ Taylor’s hypothesis. In one of the first applications of Taylor’s hypothesis

to the solar wind, Matthaeus and Goldstein 8 deduced k−5/3 spectrum for the solar wind by

employing Eq. (2). There are many more works on solar wind observations, e.g., Podesta

et al. 9 .

Recent spacecraft Parker Solar Probe (PSP) has come quite close the Sun (as close as 8.86

solar radii). At this distance, B0 is comparable to U0, and hence, we need to examine whether

Taylor’s hypothesis can be employed to PSP data. In addition, the solar wind is anisotropic

that makes an application of Taylor’s hypothesis problematic. Bourouaine and Perez 10

modelled the Fourier-transformed temporal correlation function of MHD turbulence using

a Gaussian model rather than a pure exponential model, and argued that the decorrelation

frequency is linearly related to the perpendicular wavenumber. In a related work, Perez

et al. 11 investigated the validity of Taylor’s hypothesis for the PSP data, and showed that the

frequency spectrum accurately represents the spectral indices associated with the underlying

spatial spectrum of turbulent fluctuations in the plasma frame. In a another recent work,

Kasper et al. 12 computed the frequency spectrum of the PSP data recorded at 13 million

km above the photosphere, and observed the spectral index to be closer to −3/2 than −5/3.

Note that Kasper et al. 12 assume Taylor’s hypothesis for the solar wind even though B0 and

U0 are comparable in this regime.

In this paper, we extend the derivation of Verma et al. 7 for hydrodynamic turbulence

to MHD turbulence. We express the “dressed” or “renormalized” temporal correlation

functions for the Elsässer variables in the Fourier space. Then, an inverse Fourier transform

of the above correlation function yields two-point two-time correlation function. By setting

the distance between the two points to zero, we deduce one-point two-time correlation

functions, whose Fourier transform yields the frequency spectra for MHD turbulence. For

Kolmogorov’s and Iroshnikov-Kraichnan models13,14, we obtain respectively f−5/3 and f−3/2

frequency spectra with prefactors that are functions of |U0∓B0|, which are the wave speeds

of Alfvén waves. Thus, we generalize Taylor’s hypothesis to MHD turbulence; our derivation

is mathematically more rigorous than earlier ones.

In the next two sections, we derive the correlation functions for linear and turbulent
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MHD.

II. CORRELATION FUNCTIONS FOR LINEAR MHD

The equations of a magnetofluid moving with a mean velocity of U0 in a background of

a mean magnetic field B0 are

∂u

∂t
+ (U0 · ∇)u− (B0 · ∇)b+ (u · ∇)u− (b · ∇)b = −∇p + ν∇2u+ f , (3)

∂b

∂t
+ (U0 · ∇)b− (B0 · ∇)u+ (u · ∇)b− (b · ∇)u = η∇2b, (4)

∇ · u = 0, ∇ · b = 0, (5)

where u,b are the velocity and magnetic field fluctuations, f is the external force, p is

the pressure, ν is the kinematic viscosity, and η is the magnetic diffusivity. In the above

equations, the magnetic field is velocity units, which is obtained by a transformation,

BCGS → BCGS/
√
4πρ, where ρ is the material density of the flow. In this paper, we as-

sume that the flow is incompressible.

Alfvén waves are the basic modes of linearized MHD equations, and they are conveniently

expressed in terms of Elsässer variables, z± = u± b. Using Eqs. (3, 4, 5), we can derive the

following equations for z±:

∂z±

∂t
+ Z∓

0 · ∇z± + (z∓ · ∇)z± = −∇p+ ν±∇2z± + ν∓∇2z∓ + f , (6)

∇ · z± = 0, (7)

where Z∓
0 = (U0∓B0), and ν± = (ν± η)/2. For simplification, in this paper, we take ν = η

that leads to ν+ = ν = η and ν− = 0. In Fourier space, the equations for z± are

[

∂

∂t
+ iZ∓

0 · k + νk2

]

z±(k) = −ikp(k)− i
∑

p

[k · z∓(q)]z±(p) + f(k), (8)

k · z±(k) = 0, (9)

with q = k− p. A linearized version of the above equations indicates that the waves z+(k)

and z−(k) move with speeds (U0 −B0) · k and (U0 +B0) · k respectively.

Using the linearised versions of Eq. (8), we derive the equations for the Green’s functions

[

∂

∂t
+ iZ∓

0 · k+ νk2

]

G±(k, t, t′) = δ(t− t′), (10)
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whose solutions are

G±(k, τ) = θ(τ) exp [−iZ∓
0 · kτ ] exp (−νk2τ), (11)

where τ = t− t′, and θ(τ) is the step function.

The equal-time correction functions, C±(k, 0), and two-time correction functions, C±(k, τ),

for z±(k) are defined as

C±(k, 0) = 〈|z±(k, t)|2〉, (12)

C±(k, τ) = 〈z±(k, t) · z±∗(k, t+ τ)〉. (13)

Note that C±(k, τ) is a complex function. We define the normalised correlation function as

R±(k, τ) =
C±(k, τ)

C±(k, 0)
. (14)

A generalisation of fluctuation-dissipation theorem to MHD yields15

R±(k, τ) = G±(k, τ) = θ(τ) exp (−iZ∓
0 · kτ) exp (−νk2τ). (15)

The above equation indicates that the normalised correlation functions exhibit damped

oscillations.

III. CORRELATION FUNCTIONS FOR TURBULENT MHD

A magnetofluid becomes turbulent when UL/ν ≫ 1 and UL/η ≫ 1, where U, L are the

large-scale velocity and length respectively. There is no definitive theory of MHD turbulence,

rather it has many models16–18. In this paper we will focus on two leading models. Here, we

focus on the shell spectra: E±(k), Eu(k), Eb(k), which are defined as

E± =
1

2
〈|z±|2〉 =

∫

E±(k)dk, (16)

Eu =
1

2
〈|u2〉 =

∫

Eu(k)dk, (17)

Eb =
1

2
〈|b2〉 =

∫

Eu(k)dk, (18)

where E±, Eu, Eb are the total energies per unit volume of z±, u, and b respectively.

1. Komogorov-like MHD turbulence phenomenology: In this framework, the energy spec-

tra E±(k) are modelled as16,19,20

E±(k) = K±(ǫ±)4/3(ǫ∓)−2/3k−5/3, (19)
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where ǫ± are the inertial-range energy fluxes or dissipation rates of z±, and K± are

constants, similar to Kolmogorov’s constant for hydrodynamic turbulence. This phe-

nomenology is also referred to as imbalanced MHD.

In addition, Goldreich and Sridhar 21 constructed a phenomenology for the anisotropic

MHD turbulence. Using critical balance between the time scales for the nonlinear

interactions and Alfvén wave propagation, they showed that the modal energy

Ẽ(k⊥, k‖) = Kǫ2/3k
−10/3
⊥ g(k‖/k

2/3
⊥ ), (20)

where K is a constant, ǫ is the total dissipation rate, and k‖ and k⊥ are respectively

the wavenumber components parallel and perpendicular to the mean magnetic field.

Note that
∫

k⊥dk⊥dk‖Ẽ(k⊥, k‖) = E, (21)

where E is the total energy.

2. Iroshnikov-Kraichnan phenomenology13,14: In this framework, the Alfvén time scale,

(kB0)
−1, is the relevant time scale, leading to the energy spectrum as

Eu(k) ≈ Eb(k) ≈ KIK(ǫB0)
1/2k−3/2, (22)

where KIK is constant, and B0 is the amplitude of the mean magnetic field or that of

large-scale magnetic field. In this phenomenology, the kinetic and magnetic energies

are equipartitioned.

Dobrowolny et al. 22 showed that

ǫ+ = ǫ− =
1

B0
E+(k)E−(k)k3. (23)

For a special case when E+(k) = E−(k) = E(k) (E is the total energy), we obtain

E+(k) = E−(k) = E(k) = K ′(ǫB0)
1/2k−3/2. (24)

Now, we model the correlation function for MHD turbulence following the strategies

adopted for the hydrodynamic turbulence. The most critical part is the convective compo-

nent. Using Eq. (8), we deduce the convective component to be exp (−iZ∓
0 · kτ) for z±. In

the following discussion we show that the convective part contributes most significantly to

the frequency spectra.
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The other two parts of the correlation function are the effective diffusion parameters and

the sweeping effect. In hydrodynamic turbulence, field-theoretic treatment shows that the

renormalized viscosity or effective viscosity (ν(k)) is

ν(k) = ν∗ǫ
1/3k−4/3, (25)

where ν∗ is a nondimensional constant16,23,24. However, MHD turbulence has two diffusion

parameters, viscosity and magnetic diffusivity, that depend on the cross helicity, Alfvén

ratio, and mean magnetic field. We do not yet have general formulas for these renormalized

parameters, even though they have been solved for special cases (see Verma 25,26,27). In this

paper, we simplify the calculation by assuming that both the renormalized parameters are

equal (i.e., ν(k) = η(k)), and that for Kolmogorov-like phenomenology,

ν±(k) = ν±
∗ (ǫ

±)1/3k−4/3, (26)

and for Iroshnikov-Kraichnan phenomenology,

ν±(k) = ν ′
∗(ǫB0)

1/4k−5/4. (27)

Here, ν±
∗ and ν ′

∗ are constants. As we show in the next section, the terms with ν±(k) get

integrated in E±(f). Hence, a precise form of ν±(k) may not be critical for the derivation

of E±(f).

In addition, according to the sweeping effect, large-scale flow structures sweep the inertial-

range fluctuations. For hydrodynamic turbulence, Kraichnan 4 , Wilczek and Narita 5 , Verma

et al. 7 and others have constructed models for the sweeping effect. For MHD turbulence,

we follow the prescription of Verma et al. 7 who added a random large-scale velocity field,

Ũ0, to the mean velocity field U0. These corrections are added in the correlation function

for the linear equation [Eq. (15)].

Under the above assumptions, we arrive at the following expressions for the correlation

functions of MHD turbulence7:

R±(k, τ) =
C±(k, τ)

C±(k)
= exp (−iZ∓

0 · kτ) exp(−iŨ0 · kτ) exp[−ν±(k)k2τ ]. (28)

Note that the correlations functions depend on both U0 and B0. In the next section, we

will relate the above functions to Taylor’s hypothesis for MHD turbulence.
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IV. TAYLOR’S HYPOTHESIS FOR MHD TURBULENCE

Using Eq. (28), we first derive the two-point two-time correlation functions, after that we

derive one-point two-time correlation functions, whose Fourier transform yields the frequency

spectra of real-space time series of z±.

Using Eq. (28), we derive the following two-point two-time correlation functions for z±:

C±(r, τ) =

∫

dkC±(k) exp[−ν(k)k2τ − iZ∓
0 · kτ ] exp[−ik · Ũ0(k)τ ] exp(ik · r), (29)

where Z∓
0 = U0 ∓ B0. We ensemble average C±(r, τ) for random Ũ0 (assuming isotropic,

as in Kraichnan 4) that yields4,5,7

C±(r, τ) =

∫

dkC±(k) exp[−ν±(k)k2τ − iZ±
0 · kτ ]〈exp[−ickŨ0(k)τ ]〉 exp(ik · r)

=

∫

dkC±(k) exp[−ν±(k)k2τ − iZ±
0 · kτ ] exp[−c2k2{Ũ0(k)}2τ 2] exp(ik · r).(30)

For simplicity, we assume that the constant c ≈ 1, and set r = 0 to compute one-point

two-time correlation functions C±(r = 0, τ) = C±(τ). The Gaussian model for the sweeping

effect has been reported earlier by Kraichnan 4 , Wilczek and Narita 5 , and Bourouaine and

Perez 10 .

Now we derive C±(τ) for the Kolmogorov-like phenomenology. Following Pope28, we take

C±(k):

C±(k) =
E±(k)

2πk2
=

1

2πk2
fL(kL)fη(kη)K

±k−5/3 (ǫ
±)4/3

(ǫ∓)2/3
(31)

where

fL(kL) =

(

kL

[(kL)2 + cL]1/2

)5/3+p0

, (32)

fη(kη) = exp
[

−β
{

[(kη)4 + c4η]
1/4 − cη

}]

(33)

are respectively the forcing and dissipative components of the energy spectra, and cL, cη, p0, β

are constants. We employ Eq. (26) for ν(k), and Ũ0(k) = ǫ1/3k−1/3 with ǫ as the total

dissipation rate (see Verma et al. 7). In addition, we ignore the constants for brevity. After

the above substitutions in Eq. (30) with r = 0, we obtain

C±(τ) = K± (ǫ
±)4/3

(ǫ∓)2/3

∫

dkk−5/3fL(kL)fη(kη) exp(−iZ∓
0 · kτ)×

exp[−(ǫ±)1/3k2/3τ ] exp[−ǫ2/3k4/3τ 2]. (34)

The above integral is quite complex, but it can be simplified in the asymptotic case.
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For Taylor’s frozen-in hypothesis to work, we assume that Z∓
0 ·k ≫ ν±(k)k2 and Z∓

0 ·k ≫
kŨ0(k). In addition, for C+(τ) and C−(τ), we choose the z axis to be along the direction of

Z−
0 and Z+

0 respectively. For simplification, we make a change of variable, k̃± = Z∓
0 kτ , and

use ǫ = U2/T (U is the rms speed). As a result, we obtain

C±(τ) ≈ K±(Z∓
0 τ)

2/3 (ǫ
±)4/3

(ǫ∓)2/3

∫

dk̃±k̃
−5/3
± fL[k̃±(L/Z

∓
0 τ)]fη[k̃±(η/U0τ)]

sin(Z∓
0 kτ)

Z∓
0 kτ

×

exp[−k̃
2/3
± (U/Z∓

0 )
2/3(α±τ/T )1/3 − k̃

4/3
± (U/Z∓

0 )
4/3(τ/T )2/3], (35)

where ǫ± = ǫα±. For τ in the inertial range, L/Z∓
0 τ ≫ 1 and η/Z∓

0 τ ≪ 1. Consequently,

fL(k̃±(L/Z
∓
0 τ)) ≈ 1, and fη(k̃±(η/Z

∓
0 τ) ≈ 1. Therefore,

C±(τ) ≈ K±(Z∓
0 τ)

2/3 (ǫ
±)4/3

(ǫ∓)2/3

∫

dk̃±k̃
−5/3
±

sin k̃±

k̃±
×

exp[−k̃
2/3
± (U/Z∓

0 )
2/3(α±τ/T )1/3 − k̃

4/3
± (U/Z∓

0 )
4/3(τ/T )2/3]

= A±K±(Z∓
0 τ)

2/3 (ǫ
±)4/3

(ǫ∓)2/3
, (36)

where A± are the values of the nondimensional integrals. The Fourier transform of the above

C±(τ) yields the following frequency spectra:

E±(f) ≈
∫

C±(τ) exp(−i2πfτ)dτ =

∫

A±K±(Z∓
0 τ)

2/3 (ǫ
±)4/3

(ǫ∓)2/3
exp(−i2πfτ)dτ

= A′±(|U0 ∓B0|)2/3
(ǫ±)4/3

(ǫ∓)2/3
f−5/3, (37)

where A′± are constants. Thus, we obtain −5/3 frequency spectra for Kolmogorov-like

MHD turbulence phenomenology. Note that E+(f) and E−(f) are functions of |U0 − B0|
and |U0 + B0|, respectively, which are the respective speeds of z+(k) and z−(k) in the

linear approximation. In comparison to Eq. (2), E±(f) has U0 → |U0 ∓ B0| and ǫu →
(ǫ±)4/3(ǫ∓)−2/3.

The calculation for the anisotropic MHD turbulence is more complex. However, the

complexity is likely to be in the integral computation, which will reflect in the constants

A±. For anisotropic MHD turbulence, we expect that the form of E±(f) will the same as

in Eq. (37).

The above analysis can be extended to Iroshnikov-Kraichnan phenomenology, where the

correlation functions are

C±(k) =
E±(k)

2πk2
∼ (ǫB0)

1/2k−7/2. (38)
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We substitute Eq. (38) into Eq. (30), employ ν±(k) of Eq. (27), and set r = 0. Following

the same steps as above, we obtain

C±(τ) ≈ (ǫB0Z
∓
0 τ)

1/2. (39)

Fourier transform of the above C±(τ) yields the following frequency spectra:

E±(f) = AIK(ǫB0|U0 ∓B0|)1/2f−3/2, (40)

where AIK is a constant. Thus, we obtain f−3/2 frequency spectrum for the Iroshnikov-

Kraichnan phenomenology.

The prefactors for E±(f) are functions of Z±
0 . However, the prefactors for Eu(k) and

Eb(k) would be more complex because

E±(f) = Eu(f) + Eb(f)± 2Hc(f), (41)

where Hc = (1/2)〈u · b〉. Clearly, derivation of Eu(k), Eb(k), and Hc(k) requires further

inputs, e.g., relationships among these functions. Based on these complexities,

V. DISCUSSION AND CONCLUSIONS

In this paper, we extend Taylor’s frozen-in hypothesis to MHD turbulence. From the first

principle, we derive one-point two-time correlation functions for MHD turbulence, whose

Fourier transform yields the corresponding frequency spectra. The main predictions of our

quantitative calculations are as follows:

1. The spectral indices for E±(k) and E±(f) are the same.

2. The prefactors of E±(f) are proportional to |U0 ∓B0|2/3 in Kolmogorov-like phe-

nomenology, but proportional to B
1/2
0 |U0 ∓B0|1/2 in Iroshnikov-Kraichnan phe-

nomenology. In contrast to Eu(f) for hydrodynamic turbulence, U0 → |U0 ∓B0|
in E±(f) of MHD turbulence.

3. The kinetic and magnetic energy spectra, Eu(f) and Eb(f), are expected to have more

complex prefactors.

4. When B0 ≪ U0, the frequency spectrum of Eq. (2) can be employed for all the fields.
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The above predictions are important for the time series analysis of the solar wind and

solar corona when U0 and B0 are comparable, e.g., for Parker Solar Probe (PSP) when it is

close to the Sun. Hence, PSP’s data provides an unique opportunity for testing the above

predictions. We hope to validate these predictions in near future.

Solar wind data reveal another interesting property. Many authors8,9,12 observe that the

kinetic energy spectrum (Eu(k)) is steeper than the magnetic energy spectrum (Eb(k)). This

relative steepening of Eu(k) with relative to Eb(k) is attributed to the energy transfers from

the kinetic energy to the magnetic energy29,30. Note that these energy transfers are critical

for the magnetic field generation or dynamo. Interestingly, E±(k) do not suffer from such

steepening due to an absence of cross transfer between z+ and z− (see Verma 16,17). This is

another reason why E±(k) are more reliable energy spectra compared to Eu(k) and Eb(k). It

will be interesting to quantitatively compare the solar wind observations with the theoretical

predictions made in this paper.
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